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a b s t r a c t

The classical Rayleigh–Bénard problem in an infinitely wide horizontal fluid layer with isothermal bound-
aries heated from below is revisited. The effects of pressure work and viscous dissipation are taken into
account in the energy balance. A linear analysis is performed in order to obtain the conditions of marginal
stability and the critical values of the wave number a and of the Rayleigh number Ra for the onset of con-
vective rolls. Mechanical boundary conditions are considered such that the boundaries are both rigid, or
both stress-free, or the upper stress-free and the lower rigid. It is shown that the critical value of Ra may
be significantly affected by the contribution of pressure work, mainly through the functional dependence
on the Gebhart number and on a thermodynamic Rayleigh number. While the pressure work term affects
the critical conditions determined through the linear analysis, the viscous dissipation term plays no role
in this analysis being a higher order effect. A nonlinear analysis is performed showing that the superad-
iabatic Rayleigh number replaces Ra in the functional dependence of the excess Nusselt number. Finally, a
reasoning is proposed to show how the results obtained may be used as a test on the most appropriate
formulation of the Oberbeck–Boussinesq model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The term ‘‘Rayleigh–Bénard problem” is the common label for
the problem of the onset of convection in a horizontal fluid layer
uniformly heated from below. Rayleigh [1] published an analysis
on the assumption that the convection was induced by buoyancy
effects. He referred to the experiments performed by Bénard
[2–4], though it is now known that in the thin layers with an open
top observed by Bénard the convection must have been caused pri-
marily by surface-tension differences (the Marangoni effect) rather
than buoyancy. Rayleigh employed an approximation to the basic
equations of motion that he ascribed to Boussinesq [5], but Joseph
[6] pointed out that the approximation had been earlier employed
by Oberbeck [7]. Nowadays, the parameter whose value deter-
mines the onset of convection is called the Rayleigh number. Jo-
seph [6] noted that this parameter appeared in a study by Lorenz
[8], who also used the approximation employed by Oberbeck.

Briefly stated, the Boussinesq approximation is the assumption
that all fluid properties such as viscosity and density can be taken
as constants except that a buoyancy term proportional to a density
difference is retained in the momentum equation; see, for example,
ll rights reserved.
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Section 8 of Chandrasekhar [9]. This means that the fluid is taken
as quasi-incompressible, the divergence of the velocity is approxi-
mated by zero in the continuity equation, and the term involving
the product of the pressure and the divergence of the velocity is
neglected in the thermal energy equation. In addition, a scaling
argument given by Chandrasekhar [9] justifies the neglect of the
viscous dissipation in the thermal energy equation. The simplified
thermal energy equation was employed by Rayleigh [1], who as-
cribed it to Boussinesq [5].

It is obvious that for convection in the atmosphere the effect of
compressibility is important. It was in this context that Jeffreys
[10] considered the instability of a compressible fluid heated from
below. Jeffreys employed a thermal energy equation (first derived
for the thermodynamics of an elastic solid) containing a term pro-
portional to the product of the temperature and the time derivative
of the excess expansion. He concluded that the criterion for the
instability of a compressible fluid could be derived from that for
an incompressible fluid by replacing the applied vertical tempera-
ture gradient by the difference between that quantity and the adi-
abatic temperature gradient.

Subsequent investigations of ‘‘non-Boussinesq effects” in the
Rayleigh–Bénard problem have concentrated on effects of temper-
ature-dependent viscosity (see the work surveyed in Section 8.1 of
[11]) and most experimental work has involved liquids rather than
gases. Exceptions are the papers that we now mention.
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Nomenclature

a nondimensional wave number, Eqs. (31)
cp; cv specific heat at constant pressure, specific heat at con-

stant volume
Cn; Ĉn nth series coefficients, Eq. (45)
C;M nondimensional matrices with components Cn and Mmn

EðyÞ nondimensional residual, Eq. (47)
Dij component of the nondimensional strain tensor
f ðyÞ; hðyÞ; sðyÞ nondimensional functions, Eq. (31)
FðyÞ nondimensional function, Eq. (36)
F0; F1; F2 nondimensional coefficients, Eq. (36)
g modulus of gravitational acceleration
g gravitational acceleration
Ge Gebhart number, Eq. (8)
Imn nondimensional coefficients, Eq. (52)
j unit vector in the y-direction
k thermal conductivity
L layer thickness
Nu Nusselt number, Eq. (73)
p nondimensional pressure, Eq. (7)
P;P nondimensional pressure disturbance, Eqs. (15) and

(65)
Pr Prandtl number, Eq. (8)
Q nondimensional function, Eq. (78)
Ra Rayleigh number, Eq. (8)
Rs superadiabatic Rayleigh number, Eq. (61)
t nondimensional time, Eq. (7)
T nondimensional temperature, Eq. (7)
�Tc; �Th top and bottom boundary temperatures

u nondimensional velocity, u ¼ ðu; v;wÞ, Eq. (7)
U nondimensional velocity disturbances, U ¼ ðU;V ;WÞ,

Eq. (15)
x; y; z nondimensional coordinates, Eq. (7)

Greeks
a thermal diffusivity
b volumetric coefficient of thermal expansion
c nondimensional parameter, K=Ra
e nondimensional perturbation parameter, Eq. (15)
g exponential coefficient, Eq. (31)
h;H nondimensional temperature disturbance, Eqs. (15) and

(65)
K thermodynamic Rayleigh number, Eq. (8)
l dynamic viscosity
m kinematic viscosity
n1; n2 nondimensional parameters, Eq. (38)
N nondimensional parameter, Eq. (8)
q mass density
�sxy; �szy viscous shear stresses on a horizontal plane, Eq. (40)
U nondimensional parameter, Eq. (77)
w nondimensional streamfunction, Eq. (26)

Superscript, subscripts
- dimensional quantity
B base flow
cr critical value
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In their experiments on the onset of convection Thompson
and Sogin [12] avoided the uncertainties of optical methods,
which require observations on finite-amplitude post-transition
convection, by using a gas and keeping the temperature constant
and varying the pressure until an increase in heat transfer indi-
cated that convection had begun. Experimenting with three
gases, they obtained for the critical Rayleigh number a value
1793� 80. It is interesting that this is marginally greater than
the theoretical value of 1708, but the difference is barely of sta-
tistical significance.

The numerical investigation by Turcotte et al. [13] was pri-
marily concerned with the influence of viscous dissipation on
Bénard convection. They considered the case of a quasi-Bous-
sinesq fluid with vanishing isothermal compressibility. In their
steady-state thermal energy equation they included on the left-
hand side (together with the convection term) a pressure work
term that represents the adiabatic temperature gradient consid-
ered by Jeffreys [10]. On the right hand side (together with the
conduction term) they had a viscous dissipation term. They con-
sidered the volume integral of this equation over a convection
cell. They noted that the convection term and the conduction
term make a zero contribution to this integral. They also noted
that the viscous dissipation term is positive definite and repre-
sents a source. They then argued that the volume integral of
the viscous dissipation term must balance the volume integral
of the pressure work term. In our opinion this argument is inva-
lid, for the following reason.

In applying the First Law of Thermodynamics to the convection
cell, Turcotte et al. [13] have implicitly assumed that they have
control of the heat flux over the entire boundary of the cell. How-
ever, on part of that boundary the temperature is prescribed by the
boundary conditions of the Rayleigh–Bénard problem. This means
that on part of the boundary they have effectively prescribed both
the temperature and the heat flux. This is illegitimate. The
steady-state equation is not applicable to the setting up of the Ray-
leigh–Bénard problem in a physical situation. The heat flux at the
top and bottom boundaries adjusts to fit the prescribed tempera-
tures at those boundaries in association with any heat source with-
in the cell.

We conclude that the effects of viscous dissipation are not cou-
pled in the way that Turcotte et al. [13] claim they are. Conse-
quently a new investigation of the effects of pressure work and
viscous dissipation, treated independently, is required. This is the
motivation for the present paper.

Before proceeding we note that Velarde and Perez Cordon
[14] pointed out that the heuristic quasi-Boussinesq approxima-
tion used by Turcotte et al. [13] is not complete because they
disregarded a hydrostatic pressure contribution. We also note
the work of Spiegel and Veronis [15], Spiegel [16], Giterman
and Shteinberg [17,18], Zeytounian [19] and Fröhlich et al.
[20] on non-Boussinesq convection, especially in deep layers.
Pantokratoras [21] obtained a numerical solution of the bound-
ary layer equations along a vertical stationary isothermal plate
taking into account the viscous dissipation and the pressure
work of the fluid.

This paper is concerned with convection in a Newtonian fluid.
The corresponding problem in a saturated porous medium is also
of interest. This has been investigated by Nield and Barletta [22].
2. Mathematical model

Let us consider an infinitely wide horizontal fluid layer having
thickness L and bounded by two rigid and impermeable planes.
The lower boundary plane is maintained at temperature �Th, while
the upper boundary plane has a uniform temperature �Tc < �Th. By
assuming the validity of the Oberbeck–Boussinesq approximation,
the following local balance equations hold:



A. Barletta, D.A. Nield / International Journal of Heat and Mass Transfer 52 (2009) 3279–3289 3281
�$ � �u ¼ 0; ð1Þ

q
@�u
@�t
þ �u � �$�u

� �
¼ ��$�pþ qg� qbgð�T � �TcÞ þ l �r2 �u; ð2Þ

qcp
@�T
@�t
þ �u � �$�T

� �
¼ k �r2�T þ b�T

@�p
@�t
þ �u � �$�p

� �
þ 2l�Dij

�Dij; ð3Þ

where

�Dij ¼
1
2

@�ui

@�xj
þ @

�uj

@�xi

� �
ð4Þ

is the ði; jÞ-component of the strain tensor and the sum over re-
peated indices is implied.

In Eq. (2), the vector g ¼ �gj is the gravitational acceleration
with modulus g and parallel to the unit vector j in the y-direction
orthogonal to the boundary planes. The boundary conditions are

�y ¼ 0 : �u ¼ 0; �T ¼ �Th; ð5Þ
�y ¼ L : �u ¼ 0; �T ¼ �Tc: ð6Þ
3. Dimensionless equations

Up to this point, an overbar has been used to denote dimen-
sional variables and operators. We define the dimensionless
quantities

ð�x; �y;�zÞ ¼ Lðx; y; zÞ; �t ¼ L2

a
t; �u ¼ a

L
u; �Dij ¼

a
L2 Dij;

�T ¼ �Tc þ ð�Th � �TcÞT; �p ¼ al
L2 p; ð7Þ

and the dimensionless parameters

Ra ¼ bgð�Th � �TcÞL3

ma
; N ¼ b�Tc; Ge ¼ bgL

cp
;

K ¼ bg�TcL3

ma
; Pr ¼ m

a
; ð8Þ

where a ¼ k=ðqcpÞ is the thermal diffusivity and m ¼ l=q is the kine-
matic viscosity. Therefore, Eqs. (1)–(3), (5) and (6) can be rewritten
as

$ �u¼0; ð9Þ
1
Pr

@u
@t
þu �$u

� �
¼�$pþ RaT�K

N

� �
jþr2u; ð10Þ

@T
@t
þu �$T ¼r2TþNGe

K
K
Ra
þT

� �
@p
@t
þu �$p

� �
þ2

Ge
Ra

DijDij; ð11Þ

y¼0 : u¼0; T ¼1; ð12Þ
y¼1 : u¼0; T ¼0: ð13Þ

In Eqs. (10) and (11), p denotes the actual dimensionless pressure,
not the excess over a reference hydrostatic dimensionless pressure
as in the classical Rayleigh–Bénard problem.

Here, Pr is the Prandtl number, Ra is the Rayleigh number, Ge is
the Gebhart number, K is a thermodynamic Rayleigh number
based on the reference temperature �Tc. Eq. (11) reveals that the
limit Ge! 0 corresponds to negligible effects of pressure work
and viscous dissipation, i.e., to the classical Rayleigh–Bénard prob-
lem. It must be mentioned that the Gebhart number coincides with
the dissipation number, Di, introduced in Turcotte et al. [13].

4. Basic solution

A basic solution of Eqs. (9)–(13) is such that the fluid is at rest
with stationary temperature and pressure distributions, namely

uB ¼ 0; TB ¼ 1� y; pB ¼ Ray 1� K
NRa

� y
2

� �
: ð14Þ
We point out that, since pB is defined up to an arbitrary additive
constant, this constant can be fixed so that pB ¼ 0 at y ¼ 0.
5. Linear disturbance equations

Starting from the basic solution (14), one can define small per-
turbations of the velocity, temperature and pressure fields,

u ¼ uB þ eU; T ¼ TB þ eh; p ¼ pB þ eP; ð15Þ

where e is an arbitrary small perturbation parameter and
U ¼ ðU;V ;WÞ.

On substituting Eqs. (14) and (15) into Eqs. (9)–(13) and
neglecting terms of order e2, one obtains

$ � U ¼ 0; ð16Þ
1
Pr

@U
@t
¼ �$P þ Rahjþr2U; ð17Þ

@h
@t
� V ¼ r2hþ NGe

K
K
Ra
þ 1� y

� �

@P
@t
þ Ra 1� K

NRa
� y

� �
V

� �
; ð18Þ

y ¼ 0;1 : U ¼ 0; h ¼ 0: ð19Þ

Eq. (18) reveals that, in the linearization of the energy balance, there
is no effect of the viscous dissipation term, as this term produces a
contribution of order e2. On the other hand, there is a contribution
of order e of the pressure work. This contribution results in the term
proportional to Ge on the right-hand side of Eq. (18).

5.1. Rolls perturbation

The basic solution described by Eq. (14) is invariant under rota-
tions around the y-axis. Thus, a plane wave perturbation propagat-
ing in any horizontal direction produces the same effect as a plane
wave propagating along the x-axis. As a consequence, the analysis
of roll perturbations can be formulated as a 2D-problem in the
ðx; yÞ-plane. One obtains

@U
@x
þ @V
@y
¼ 0; ð20Þ

1
Pr

@U
@t
¼ � @P

@x
þr2U; ð21Þ

1
Pr

@V
@t
¼ � @P

@y
þ Rahþr2V ; ð22Þ

@h
@t
� V ¼ r2hþ NGe

K
K
Ra
þ 1� y

� �

@P
@t
þ Ra 1� K

NRa
� y

� �
V

� �
; ð23Þ

y ¼ 0;1 : U ¼ V ¼ 0; h ¼ 0: ð24Þ

Eqs. (21) and (22) can be collapsed into a single equation not con-
taining P, namely

1
Pr

@

@t
�r2

� �
@U
@y
� @V
@x

� �
¼ �Ra

@h
@x
: ð25Þ

Let us introduce a streamfunction wðx; yÞ, such that

U ¼ @w
@y

; V ¼ � @w
@x

: ð26Þ

Then Eq. (20) is identically satisfied, while Eqs. (21), (25), (23) and
(24) can be rewritten, respectively, as



Table 1
Rigid boundaries: critical values of a; Ra; n1 and n2, with N ¼ 1 and K ¼ 5000.

Ge a Ra n1 n2

0 3.116 1707.76 �6.467 �0.012104
10�8 3.116 1707.76 �6.467 �0.012104
10�4 3.116 1708.25 �6.467 �0.012100
10�3 3.116 1712.60 �6.467 �0.012070
10�2 3.116 1756.06 �6.468 �0.011776
10�1 3.116 2181.48 �6.473 �0.009535
1/4 3.117 2845.81 �6.492 �0.007456
1/2 3.119 3805.65 �6.554 �0.005941
3/4 3.126 4578.64 �6.656 �0.005417
1 3.144 5188.63 �6.794 �0.005317

Table 2
Rigid boundaries: critical values of a; Ra; n1 and n2, with N ¼ 1 and K ¼ 104.

Ge a Ra n1 n2

0 3.116 1707.76 �6.467 �0.012104
10�8 3.116 1707.76 �6.467 �0.012104
10�4 3.116 1708.75 �6.467 �0.012097
10�3 3.116 1717.68 �6.467 �0.012034
10�2 3.116 1806.86 �6.468 �0.011442
10�1 3.116 2687.82 �6.472 �0.007727
1/4 3.117 4092.02 �6.492 �0.005190
1/2 3.120 6177.07 �6.581 �0.003757
3/4 3.137 7893.24 �6.750 �0.003385
1 3.186 9257.65 �6.999 �0.003387
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1
Pr

@

@t
�r2

� �
@w
@y
¼�@P

@x
; ð27Þ

1
Pr

@

@t
�r2

� �
r2w¼�Ra

@h
@x
; ð28Þ

@h
@t
þ@w
@x
¼r2hþNGe

K
K
Ra
þ1�y

� �
@P
@t
�Ra 1� K

NRa
�y

� �
@w
@x

� �
; ð29Þ

y¼0;1 : w¼ @w
@y
¼0; h¼0: ð30Þ

We look for solutions of Eqs. (27)–(30) having the form

w ¼ f ðyÞegt sinðaxÞ; P ¼ sðyÞegt cosðaxÞ; h ¼ hðyÞegt cosðaxÞ:
ð31Þ

When the exponential coefficient g is positive, the wave ampli-
tude increases in time and the basic solution is unstable. If
g < 0, the wave amplitude decreases in time and we have stabil-
ity of the basic solution. In the following, we will be interested
in determining the threshold condition g ¼ 0, i.e., the condition
of marginal stability.

Substituting Eq. (31) with g ¼ 0 into Eqs. (27)–(30) yields

f 000ðyÞ � a2f 0ðyÞ þ asðyÞ ¼ 0; ð32Þ

f
0000 ðyÞ � 2a2f 00ðyÞ þ a4f ðyÞ þ aRahðyÞ ¼ 0; ð33Þ

h00ðyÞ � a2hðyÞ � aFðyÞf ðyÞ ¼ 0; ð34Þ
y ¼ 0;1 : f ¼ f 0 ¼ h ¼ 0; ð35Þ

where the primes denote differentiation with respect to y and

FðyÞ ¼ 1þ NGeRa
K

K
Ra
þ 1� y

� �
1� K

NRa
� y

� �
¼ F0 þ F1yþ F2y2;

F0 ¼ 1þ NGeRa
K

K
Ra
þ 1

� �
1� K

NRa

� �
;

F1 ¼ �
NGeRa

K
2þ K

NRa
N� 1ð Þ

� �
;

F2 ¼
NGeRa

K
: ð36Þ

Eqs. (32)–(36) reveal that the Prandtl number has no influence in
the analysis of marginal stability.

The solution of Eqs. (33)–(35) allows one to determine f ðyÞ and
hðyÞ. Then, the unknown function sðyÞ is obtained by means of Eq.
(32), namely

sðyÞ ¼ � f 000ðyÞ � a2f 0ðyÞ
a

: ð37Þ

For any prescribed values of a; Ge; N and K, the constant Ra repre-
sents the eigenvalue corresponding to the eigenfunction pair ðf ;hÞ
defined by the solution of Eqs. (33)–(35).
Table 3
Rigid boundaries: critical values of a; Ra; n1 and n2, with N ¼ 1 and K ¼ 106.

Ge a Ra n1 n2

0 3.116 1707.76 �6.467 �0.012104
10�8 3.116 1707.77 �6.467 �0.012104
10�4 3.116 1807.76 �6.467 �0.011434
10�3 3.116 2707.76 �6.467 �0.007634
2� 10�3 3.116 3707.75 �6.467 �0.005575
5� 10�3 3.116 6707.70 �6.467 �0.003082
7� 10�3 3.116 8707.62 �6.467 �0.002374
10�2 3.116 11707.4 �6.467 �0.001766
2� 10�2 3.116 21705.2 �6.468 �0.000953
5� 10�2 3.116 51670.9 �6.475 �0.000404
7� 10�2 3.117 71608.5 �6.489 �0.000295
10�1 3.118 101423 �6.529 �0.000217
5.2. Numerical solution

Since Eqs. (33)–(35) are homogeneous, the solution f can be
arbitrarily rescaled, so that it is not restrictive to fix f 00ð0Þ ¼ 1. Then,
one can solve Eqs. (33) and (34) under the initial condition

y ¼ 0 : f ¼ 0; f 0 ¼ 0; f 00 ¼ 1; f 000 ¼ n1; h ¼ 0; h0 ¼ n2;

ð38Þ

where n1 and n2 are unknown parameters to be determined, to-
gether with the eigenvalue Ra, by means of the constraint condi-
tions at y ¼ 1, namely

f ð1Þ ¼ 0; f 0ð1Þ ¼ 0; hð1Þ ¼ 0: ð39Þ
The eigenvalue problem Eqs. (33)–(35) can be solved numeri-
cally by employing function NDSolve within the software package
Mathematica 6.0 (� Wolfram, Inc.). This function allows one to
solve numerically an initial value problem defined by a system of
ordinary differential equations.

Eqs. (33) and (34) are subject to the initial condition Eq. (38).
Then, the eigenvalue Ra and the constants n1 and n2 are determined
by solving the constraints, Eq. (39), numerically using the function
FindRoot. The numerical solution has been performed by select-
ing the explicit Runge–Kutta method among those built in
NDSolve [24].

5.3. Linear stability

Tables 1–3 show the critical values of a; Ra; n1 and n2 for N ¼ 1,
referring to K ¼ 5000 (Table 1), to K ¼ 104 (Table 2) and to K ¼ 106

(Table 3). The main result obtained from these tables is that Racr is
an increasing function of Ge. Physically, this means that the critical
value of Ra leading to rolls instabilities is increased if the pressure
work is taken into account. In other words, the effect of pressure
work is stabilizing. Tables 1–3 allow one to infer that the effect
of the pressure work term on the value of Racr is more and more
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intense as the thermodynamic Rayleigh number K increases. In
particular, one can postulate, from the results collected in Tables
1–3, that Racr for sufficiently small values of Ge can be approxi-
mately computed by adding to 1707.76, obtained for Ge! 0, a cor-
rection term given by the product GeK. This feature is particularly
evident in Table 3. A theoretical foundation for this form of the cor-
rection term has been deduced in the case of thermally-induced
instabilities in a fluid saturated porous medium bounded by iso-
thermal impermeable planes [22]. In Section 6.1, a proof of the
conjecture regarding the effect of pressure work on the value of
Racr is found with reference to the case of two stress-free bound-
aries. Tables 1–3 also show that the change of acr with Ge is defi-
nitely a minor one, unless one reaches very high values of Ge.
Fig. 1 displays plots of Racr versus Ge for different values of K. This
figure confirms that the change of Racr with Ge becomes steeper
and steeper as K increases. Fig. 2 shows that Racr has a weak
dependence on the parameter N if compared with the dependence
on K. The streamlines w ¼ constant and the isotherms h ¼ constant
are displayed in Fig. 3 with reference to the critical conditions,
a ¼ acr and Ra ¼ Racr , for K ¼ 104;N ¼ 1 and two extremely differ-
ent cases, Ge ¼ 0 and Ge ¼ 1. This figure allows a comparison be-
tween the case of negligible pressure work, Ge ¼ 0, and a case
with an extremely intense pressure work, Ge ¼ 1. The major effect
of the pressure work contribution is in the modification of the iso-
therms. In fact, by comparing the cases Ge ¼ 0 and Ge ¼ 1, one may
notice for Ge ¼ 1 a heat flux on the bottom boundary higher than
the heat flux on the top boundary. This evident asymmetry is
accompanied by a less evident downward shift of the streamline
rolls.
6. Stress-free boundaries

As is well known [23], the original Rayleigh study of 1916 [1]
was referred to the case of stress-free boundaries. This means that,
instead of the no-slip conditions �u ¼ 0 invoked in the case of rigid
boundaries examined in the preceding sections, one has the
boundary condition

�v ¼ 0; �sxy ¼ l @
�u
@�y
¼ 0; �szy ¼ l @

�w
@�y
¼ 0; ð40Þ

where �sxy and �szy are the viscous shear stresses on a horizontal
plane. This scheme implies that the stress-free boundary is assumed
to be not affected by deformation effects, i.e., gravity waves or cap-
illary ripples [23].

One may consider both horizontal boundaries subject to the
boundary condition, Eq. (40), namely Rayleigh’s problem, or just
one of them. One has two main cases:

1. both stress-free boundaries, namely

y ¼ 0 :
@u
@y
¼ 0; v ¼ 0;

@w
@y
¼ 0; T ¼ 1;

y ¼ 1 :
@u
@y
¼ 0; v ¼ 0;

@w
@y
¼ 0; T ¼ 0;

ð41Þ

2. upper stress-free boundary and lower rigid boundary, namely

y ¼ 0 : u ¼ 0; T ¼ 1;

y ¼ 1 :
@u
@y
¼ 0; v ¼ 0;

@w
@y
¼ 0; T ¼ 0:

ð42Þ

In both these cases, the basic solution, Eq. (14), is not influenced by
the different boundary conditions. The reasoning behind the for-
mulation of Eqs. (32)–(34) is left unchanged by the different
boundary conditions, while Eq. (35) is either replaced by
y ¼ 0;1 : f ¼ f 00 ¼ h ¼ 0; ð43Þ

for both stress-free boundaries, or by

y ¼ 0 : f ¼ f 0 ¼ h ¼ 0;
y ¼ 1 : f ¼ f 00 ¼ h ¼ 0;

ð44Þ

for upper stress-free boundary and lower rigid boundary.

6.1. Both boundaries stress-free

In this case, an approximate analytical solution based on the
method of weighted residuals can be found, by assuming

f ðyÞ ¼
XN

n¼1

Cn sinðnpyÞ; hðyÞ ¼
XN

n¼1

Ĉn sinðnpyÞ; ð45Þ

where Cn and Ĉn are yet unknown coefficients. Substituting Eq. (45)
into Eq. (33) and using the orthogonality of functions sinðnpyÞ, one
obtains

Ĉn ¼ �ðn2p2 þ a2Þ2 Cn

aRa
: ð46Þ

On account of Eq. (46), substitution of Eq. (45) into Eq. (34) yields
the residual

EðyÞ ¼ 1
aRa

XN

n¼1

Cn½ðn2p2 þ a2Þ3 � a2 RaFðyÞ� sinðnpyÞ: ð47Þ

We prescribe the orthogonality between the residual EðyÞ and the
weight functions sinðnpyÞ with 1 6 n 6 N, namely
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Z 1

0
EðyÞ sinðnpyÞdy ¼ 0; 1 6 n 6 N: ð48Þ

Thus, we obtain the algebraic linear system

MC ¼ 0; ð49Þ

where M is a N � N square matrix with elements

Mmn ¼ ðn2p2 þ a2Þ3dmn � a2 RaImn; ð50Þ

C is the N-dimensional vector of the coefficients Cn; dmn is the N-
dimensional Kronecker’s delta and Imn are the coefficients,

Imn ¼ 2
Z 1

0
FðyÞ sinðmpyÞ sinðnpyÞdy: ð51Þ

One obtains the following expressions:

Inn ¼ 1þ Ge
6

NRa
K

2� 3
n2p2

� �
� 3ð1� NÞ � 6K

Ra

� �
;

Imn ¼ 4mnGe
½1� ð�1Þmþn�KðN� 1Þ þ 2RaN

ðm2 � n2Þ2p2K
; m–n:

ð52Þ

The linear system, Eq. (49), admits nonvanishing solutions C pro-
vided that

det M ¼ 0: ð53Þ

The eigenvalue Ra can be determined by the solution of Eq. (53).
In the limit Ge! 0, Eq. (53) can be easily solved. In this limit,

the effect of the pressure work becomes negligible, Eqs. (37) and
(38) imply that the matrix M becomes diagonal and Eq. (53) can
be rewritten as

YN
n¼1

½ðn2p2 þ a2Þ3 � a2 Ra� ¼ 0: ð54Þ

Eq. (54) is fulfilled if

Ra ¼ ðn
2p2 þ a2Þ3

a2 ; ð55Þ

for some positive integer n. Each n defines a different mode of insta-
bility, the most effective being the lowest one, i.e., n ¼ 1. This mode
yields a minimum of function RaðaÞ for

a ¼ acr ¼
pffiffiffi
2
p ffi 2:22144; ð56Þ

such that

RaðacrÞ ¼ Racr ¼
27p4

4
ffi 657:511: ð57Þ

Eqs. (56) and (57) are consistent with the well-known result origi-
nally obtained by Rayleigh and reported, for instance, in [23].

The limit Ge! 0 is the only case such that the method of
weighted residuals yields an exact solution. This is due to the ma-
trix M being diagonal in this case, thus preventing an entangle-
ment of different n-modes in the evaluation of the determinant.

The lowest order approximation is obtained by setting N ¼ 1. In
this case, the matrix M has just one element, M11. Therefore, from
Eqs. (50)–(52), we can see that Eq. (53) is fulfilled with
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ðp2 þ a2Þ3

a2 � Ra� GeRa
6

NRa
K

2� 3
p2

� �
� 3ð1� NÞ � 6K

Ra

� �
¼ 0:

ð58Þ
Eq. (58) defines the marginal stability relation ða;RaÞ in an implicit
form. In general, Eq. (58) has two roots. However, in the limiting
case K=Ra� 1, Eq. (58) yields a unique root, namely

Ra ¼ ðp
2 þ a2Þ3

a2 þ GeK: ð59Þ

Seeking the minimum of Ra as a function of a as given in Eq. (59),
we find the critical values

acr ¼
pffiffiffi
2
p ;

Racr ¼
27p4

4
þ GeK:

ð60Þ

Eq. (60) is a proof, referred to the case of stress-free boundaries, of
the conjecture described in Section 5.4. Eq. (60) shows that the clas-
sical result, Eq. (57), is recovered by replacing Ra with the superad-
iabatic Rayleigh number

Rs ¼ Ra� GeK: ð61Þ
It may be noted that Rs is obtained from Ra by replacing the applied
temperature gradient by the difference between that quantity and
the adiabatic temperature gradient bg�Tc=cp. This is in accord with
the result of Jeffreys [10] mentioned in the Introduction.

In the approximation N ¼ 1, the critical values acr and Racr can
be obtained by differentiating Eq. (58) with respect to a and pre-
scribing dRa=da ¼ 0. We find acr ¼ p=

ffiffiffi
2
p

and, correspondingly, a
unique positive root of Eq. (58),

Racr ¼
3p2K½Geð1�NÞ�2�

2Geð2p2�3ÞN þ p
ffiffiffiffiffiffiffi
3K
p

2Geð2p2�3ÞN

� 3p2K½GeðN�1Þþ2�2þ2Geð2p2�3Þð4GeKþ27p4ÞN
n o1=2

:

ð62Þ

Expanding the right-hand side of Eq. (62) in a Taylor series with re-
spect to Ge around Ge ¼ 0, we obtain Racr ¼ 27p4=4þ OðGeÞ, so that
Eq. (62) is consistent with Eq. (60).

In order to consider better approximations, i.e., N > 1, the solu-
tion of Eq. (53) becomes more and more complicated as N in-
creases. The evaluation of the determinant of matrix M can be
performed by employing a software for symbolic manipulation,
such as Mathematica 6.0. As it can be easily expected on the basis
of Eqs. (50)–(52), as N increases, Eq. (53) becomes an algebraic
equation of increasing degree in the unknown Ra. This means that,
as N increases, several marginal stability curves will appear on the
plane ða;RaÞ. Among these non-intersecting curves, the most inter-
esting is the lower one as it represents the boundary between the
stable and the unstable region in the parametric plane ða;RaÞ.
Table 4
Stress-free boundaries: critical values of a and Ra, with N ¼ 1 and K ¼ 104. Data refer
to BSF = both boundaries stress-free or USF = upper boundary stress-free and lower
boundary rigid.

Ge BSF USF

a Ra a Ra

0 2.221 657.511 2.682 1100.65
10�8 2.221 657.511 2.682 1100.65
10�4 2.221 658.510 2.682 1101.65
10�3 2.221 667.499 2.682 1110.62
10�2 2.221 757.349 2.682 1200.30
10�1 2.221 1649.82 2.683 2090.19
1/4 2.222 3089.93 2.684 3526.10
1/2 2.228 5262.43 2.694 5707.24
3/4 2.270 7070.28 2.730 7552.10
1 2.410 8505.45 2.828 9047.81
The results of the approximate analytical solution based on the
method of weighted residuals are validated by the same numerical
procedure described in Section 5.3. This time the initial conditions
are given by

y ¼ 0 : f ¼ 0; f 0 ¼ 1; f 00 ¼ 0; f 000 ¼ n1; h ¼ 0;

h0 ¼ n2; ð63Þ

instead of Eq. (38). The definition of the parameters n1 and n2 obvi-
ously remains unchanged. These parameters, together with the
eigenvalue Ra, are determined by solving the constraints

f ð1Þ ¼ 0; f 00ð1Þ ¼ 0; hð1Þ ¼ 0; ð64Þ

instead of Eq. (39). Values of acr and Racr referring to N ¼ 1 and
K ¼ 104 are reported in Table 4 for different Ge. Again the change
of acr is very small, while the change of Racr is more apparent espe-
cially when Ge becomes very large. Fig. 4 displays plots of Racr ver-
sus Ge for values of K increasing from 104 to 107. Data obtained
numerically by the explicit Runge–Kutta numerical scheme are
compared with those evaluated by means of the approximate for-
mula (62). The comparison reveals a fair agreement in the whole
range displayed in Fig. 4. The dependence of Racr on parameter N
is very weak as it is shown in Fig. 5 and as it has been already
pointed out in the case of rigid boundaries. Fig. 6 displays the
streamlines w ¼ constant and the isotherms h ¼ constant for critical
conditions, a ¼ acr and Ra ¼ Racr , with K ¼ 104; N ¼ 1 and Ge ¼ 0;1.
With respect to the similar Fig. 3, the effect of the pressure work
contribution yields an even stronger modification of the isotherms.
For Ge ¼ 1, one has a marked asymmetry between the high heat flux
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Fig. 5. Both boundaries stress-free: plots of Racr versus N for Ge ¼ 0:1 and different
values of K.



0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

x

y

x

y

0, 2.221, 657.511Ge a Ra

1, 2.410, 8505.45Ge a Ra

Fig. 6. Both boundaries stress-free: streamlines w ¼ constant (solid lines) and isotherms h ¼ constant (dashed lines) with K ¼ 104;N ¼ 1 under critical conditions for Ge ¼ 0
(upper frame) and Ge ¼ 1 (lower frame).

3286 A. Barletta, D.A. Nield / International Journal of Heat and Mass Transfer 52 (2009) 3279–3289
on the bottom boundary and the almost vanishing heat flux on the
top boundary. In this case ðGe ¼ 1Þ, there is also a slight downward
shift of the streamline rolls.

6.2. Upper boundary stress-free and lower boundary rigid

The formulation of the initial value problem is identical to that
expressed in Eq. (38) since the lower boundary is rigid as assumed
in Section 5. What changes is the set of constraints at y ¼ 1 used to
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Fig. 7. Upper boundary stress-free and lower boundary rigid: plots of Racr versus Ge
for N ¼ 1 and different values of K.
determine n1; n2 and the eigenvalue Ra. In this case, Eq. (39) is
replaced by Eq. (64). Again, the numerical solution is based on
function NDSolve of Mathematica 6.0.

Table 4 displays a comparison for N ¼ 1 and K ¼ 104 between
the critical values of a and Ra obtained in this case with those ob-
tained in the previous section for the case of both stress-free
boundaries. In both cases, a and Ra are increasing functions of
Ge, even if the change of a is definitely small. For all the values
of Ge, the present case displays values of acr and Racr intermediate
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Fig. 8. Upper boundary stress-free and lower boundary rigid: plots of Racr versus N
for Ge ¼ 0:1 and different values of K.
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between the previously investigated case of both stress-free
boundaries and that of both rigid boundaries. In analogy with Figs.
1, 2, 4 and 5, Figs. 7 and 8 offer a representation of the functional
dependence on Ge (Fig. 7) and on N (Fig. 8). While the dependence
on Ge can be important especially for a high value of K, the depen-
dence on N can be considered as a minor one, as in the previously
considered cases. The streamlines and the isotherms for critical
conditions with K ¼ 104; N ¼ 1 and Ge ¼ 0;1 are shown in Fig. 9.
Unlike in Figs. 3 and 6, here we have an asymmetry in the mechan-
ical boundary conditions at y ¼ 0;1 inducing an asymmetry of the
isotherms and, even more evident, of the streamlines also in the
absence of any pressure work effect ðGe ¼ 0Þ. As in Figs. 3 and 6,
this effect yields a marked increase of the heat flux at the bottom
boundary in the case Ge ¼ 1. For this very high value of Ge, we no-
tice also a slight downward shift of the streamline rolls leading to a
more symmetric shape of the rolls with respect to the case Ge ¼ 0.
7. Nonlinear theory

We now return to the dimensionless equations (9)–(13) and ob-
tain equations for the finite amplitude disturbances. The analysis
in this section is modeled on that presented in Busse [25]. We
write

T ¼ TB þH; p ¼ pB þP: ð65Þ

Then from Eqs. (10) and (11) we get
1
Pr

@u
@t
þ u � $u

� �
¼ �$Pþ RaHjþr2u; ð66Þ

@H
@t
� v þ u � $H ¼ r2Hþ NGe

K
ðcþ 1� yþHÞ

� Ra 1� y� c
N

� �
v þ @P

@t
þ u � $P

� �

þ 2
cGe
K

DijDij; ð67Þ

where v is the y-component of u and c ¼ K=Ra ¼ �Tc=ð�Th � �TcÞ. For
the steady state and for the case where c� 1 and
N=c ¼ bð�Th � �TcÞ 	 1, this equation reduces to

�v þ u � $H ¼ r2H� cGev þ 2
cGe
K

DijDij: ð68Þ

Under the same assumptions, taking the scalar product of Eq. (66)
with u and averaging over the horizontal coordinates and over a
vertical section, one gets

RahhvHii ¼ hhj$uj2ii; ð69Þ

where

hh/ii ¼
Z 1

0
h/idy ð70Þ

and h/i is the average of an arbitrary function / with respect to the
horizontal coordinates. The pressure term vanishes because the bal-
ance condition $ � u ¼ 0 implies u � $P ¼ $ � ðPuÞ and the integral
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of this vanishes as a result of the boundary conditions at y ¼ 0;1 as
well as on the implicit assumption that either (i) the infinite hori-
zontal layer is in fact an approximation to a thin finite layer with
rigid vertical boundaries, or (ii) symmetric periodic conditions ap-
ply at lateral boundaries.

Multiplying Eq. (68) with H and averaging, one obtains after an
integration by parts

ð1� cGeÞhhvHii ¼ hhj$Hj2ii � 2cGe
K
hhHDijDijii: ð71Þ

We note that the effect of pressure work is to replace hhvHii by
ð1� cGeÞhhvHii and the effect of viscous dissipation is to replace
hhj$Hj2ii by

hhj$Hj2ii � 2cGe
K
hhHDijDijii: ð72Þ

In the absence of pressure work and viscous dissipation, the stan-
dard weak nonlinear theory leads to the expression

Nu ¼ 1þ hhvHii ð73Þ

for the Nusselt number Nu, defined as the ratio of the total heat
transfer to that by conduction only. This now generalizes to

Nu ¼ 1þ ð1� cGeÞhhvHii: ð74Þ

One also has the relationship

Ra ¼ hhj$uj2iihhj$Hj2ii
hhvHii2

ð75Þ

in the absence (from the thermal energy equation) of pressure work
and viscous dissipation. Eq. (75) is obtained by multiplying the two
equations (69) and (71).

The right-hand side of Eq. (75), which has been constructed so it
is homogeneous in the velocity and the perturbation temperature,
can be interpreted as a functional of the trial fields u and H and, as
a Rayleigh quotient in a calculus of variations formulation, it forms
the basis for energy stability analysis. In the present problem the
energy stability limit gives the same value of Ra as the linear sta-
bility limit. It turns out that the Euler equations in this formulation
take the same mathematical form as the linear perturbation equa-
tions. In the present case, Eq. (75) is replaced by

Rs ¼
hhj$uj2ii hhj$Hj2ii � 2cGe=KhhHDijDijii

� �

hhvHii2
; ð76Þ

where we have introduced the superadiabatic Rayleigh number, Eq.
(61).

In the light of the above, we expect the following. When the
Rayleigh number Ra is replaced by Rs the excess Nusselt number
Nu� 1 will be reduced by a fraction

U ¼ 2cGe
K
hhj$uj2iihhHDijDijii

hhj$Hj2ii
: ð77Þ

In other words, if the Nusselt number in the absence of pressure
work and viscous dissipation is given by the functional relationship

Nu ¼ 1þ QðRaÞ; ð78Þ

then in the presence of pressure work and viscous dissipation one
will have

Nu ¼ 1þ ð1�UÞQðRsÞ: ð79Þ
8. Concluding remarks

An analysis of the effects of pressure work and viscous dissipa-
tion has been performed for the onset of Rayleigh–Bénard
convection within an infinitely wide horizontal fluid layer with iso-
thermal boundaries heated from below. Being an higher order ef-
fect in this case, it has been shown that viscous dissipation plays
no role in the evaluation of the critical wave number and the crit-
ical Rayleigh number for the onset of linear instabilities. On the
other hand, the effect of pressure work may have an influence in
the evaluation of the critical conditions for the onset of convective
instabilities. A linear analysis of stability has been performed with
reference to the three main velocity boundary conditions: both ri-
gid boundaries, both boundaries stress-free, upper boundary
stress-free and lower boundary rigid. In all these cases, it has been
shown that the dimensionless parameters that mainly affect the
critical wave number, acr , and the critical Rayleigh number, Racr ,
are the Gebhart number, Ge, and the thermodynamic Rayleigh
number, K. There is a third dimensionless parameter appearing
in the dimensionless equations: N ¼ b�Tc . However, it has been
shown that the latter parameter has a poor influence on the critical
conditions for the onset of convective rolls. Reflections based on a
nonlinear analysis have been also performed showing that one of
the net effects of the inclusion of the viscous dissipation and of
the pressure work terms in the energy balance is the replacement
of the Rayleigh number with a superadiabatic Rayleigh number,
Rs ¼ Ra� GeK, in the functional dependence of the excess Nusselt
number.

One of the main conclusions of the present study is that the in-
crease of Racr with the Gebhart number is in perfect agreement
with the remarks reported in Turcotte et al. [13]. In fact, these
authors perform a numerical finite-difference solution of the non-
linear governing equations including both the terms of pressure
work and viscous dissipation. Turcotte et al. [13] reach the conclu-
sion that there is a decreasing convection with increasing dissipa-
tion number, i.e., the Gebhart number Ge, that ‘‘can be attributed to
the increase in the adiabatic temperature gradient”. The latter
quantity is bg�T=cp.

It must be pointed out that we have performed the present anal-
ysis and drawn our conclusions starting from the standard Ober-
beck–Boussinesq approximation. In particular, this means that we
have followed most of the classical literature in this field and, among
the many authors, Turcotte et al. [13]. This widely accepted formula-
tion of the Oberbeck–Boussinesq approximation implies that we
take into account the density changes with temperature only in
the gravitational body force term of the momentum balance equa-
tion. Moreover, the approximation implies that we write the energy
balance in the enthalpy formulation where the specific heat at con-
stant pressure appears, as in Eq. (3). Even if widely used, the latter
choice is not universally accepted. There is in fact another possible
variant of the Oberbeck–Boussinesq approximation, described by
Chandrasekhar [9], where the energy balance is written in the for-
mulation involving the specific heat at constant volume, cv , so that
Eq. (3), by remembering that $ � �u ¼ 0, is replaced by

qcv
@�T
@�t
þ �u � $�T

� �
¼ k �r2�T þ 2l�Dij

�Dij: ð80Þ

We refer the reader to pages 16–18 of [9] for the details. The main
differences between Eqs. (3) and (80), are that cp is replaced by cv

and that no pressure work term appears in Eq. (80). This circum-
stance has two consequences: the thermal diffusivity used both in
the expression of Pr and of Ra is now defined as k=ðqcvÞ (Chandra-
sekhar calls this ratio ‘‘coefficient of thermometric conductivity”);
the dimensionless equations do not contain the parameters N and
K, as these parameters are due to the pressure work term that
now is not present in the energy balance. The conclusion is simple:
if one adopts Chandrasekhar’s view of the Oberbeck–Boussinesq
approximation, the predicted conditions for the onset of convective
instabilities are exactly the same as in the limit Ge! 0 (negligible
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viscous dissipation and pressure work). In fact, if one applies the
usual linearization procedure, also the viscous dissipation effect is
lost as an higher order effect. Then, the linear disturbances are gov-
erned by Eqs. (16) and (17), but Eq. (18) is replaced by

@h
@t
� V ¼ r2h: ð81Þ

Everything goes as if one has taken the limit Ge! 0 in Eq. (18). To
summarize, there is an open question: is the critical value of Ra
influenced by Ge and K (we may neglect the weaker dependence
on N) or not? If the answer is ‘‘yes”, then the correct statement of
the energy balance in the framework of the Oberbeck–Boussinesq
approximation is that based on the enthalpy formulation (involving
the specific heat at constant pressure). On the contrary, if the an-
swer is ‘‘no”, then Chandrasekhar’s variant of the Oberbeck–Bous-
sinesq approximation, based on the cv-formulation of the energy
balance, is the correct one. We believe that the solution of this puz-
zle may shed a new light on the nature of the Oberbeck–Boussinesq
approximation. To achieve this result, there is a great interest for
new experimental investigations on the Rayleigh–Bénard system.
As suggested in Figs. 1, 4 and 7, regimes with K ¼ 107 should lead
to values of Racr definitely higher than those in the limit Ge! 0,
even for Ge ¼ 10�5 or slightly smaller. There should be no practical
obstacle in obtaining experimental working conditions such that
K ¼ 107 and Ge ¼ 10�5. This could be an interesting challenge for
future experimental research on a basic issue of fluid dynamics.

References

[1] Rayleigh, Lord, On convection currents in a horizontal layer of fluid, when the
higher temperature is on the under side, Philos. Mag. 32 (1916) 529–546.

[2] H. Bénard, Tourbillons cellulaires dans une nappe liquide, Revue Gén. Sci. Pure
Appl. 11 (1900) 1261–1271.

[3] H. Bénard, Tourbillons cellulaires dans une nappe liquide. Procédés
mécaniques et optiques d’examen; lois numériques des phénomènes, Revue
Gén. Sci. Pure Appl. 11 (1900) 1309–1328.

[4] H. Bénard, Les tourbillons cellulaires dans une nappe liquide transportant de la
chaleur par convection en régime permanent, Ann. Chim. Phys. 23 (1901) 62–
144.
[5] J. Boussinesq, Théorie Analytique de la Chaleur, vol. 2, Gauthier-Villars, Paris,
1903. p. 172.

[6] D.D. Joseph, Stability of Fluid Motions II, Springer, Berlin, 1976.
[7] A. Oberbeck, Über die Wärmeleitung der Flüssigkeiten bei der

Berücksichtigung der Stromungen infolge von Temperaturdifferenzen, Ann.
Phys. Chem. 7 (1879) 271.

[8] L. Lorenz, Über das Leitungsverm ögen der Metalle für Wärme und
Elecktrizität, Ann. Phys. Chem. 13 (1881) 581.

[9] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford
University Press, Oxford, 1961.

[10] H. Jeffreys, The instability of a compressible fluid heated below, Proc. Camb.
Philos. Soc. 26 (1930) 170–172.

[11] E.L. Koschmieder, Bénard Cells and Taylor Vortices, Cambridge University
Press, Cambridge, 1993.

[12] H.A. Thompson, H.H. Sogin, Experiments on the onset of thermal convection in
horizontal layers of gas, J. Fluid Mech. 24 (1966) 451–479.

[13] D.L. Turcotte, A.T. Hsui, K.E. Torrance, G. Schubert, Influence of viscous
dissipation on Bénard convection, J. Fluid Mech. 64 (1974) 369–374.

[14] M.G. Velarde, R. Perez Cordon, On the (non-linear) foundations of Boussinesq
approximation applicable to a thin layer of fluid. (II). Viscous dissipation and
large cell gap effects, J. Physique 37 (1976) 177–182.

[15] E.A. Spiegel, G. Veronis, On the Boussinesq approximation for a compressible
fluid, Astrophys. J. 131 (1960) 442–447.

[16] E.A. Spiegel, Convective instability in a compressible atmosphere. I, Astrophys.
J. 141 (1965) 1068–1090.

[17] M. Giterman, V. Shteinberg, Criteria of occurrence of free convection in a
compressible viscous heat-conducting fluid, J. Appl. Math. Mech. 34 (1970)
305–311.

[18] M. Giterman, V. Shteinberg, Criteria for commencement of convection in a
liquid close to the critical point, High Temperature 8 (1970) 754–759.

[19] R.K. Zeytounian, Bénard problem for deep convection. Rigorous derivation of
approximate equations, Int. J. Eng. Sci. 27 (1989) 1361–1366.

[20] J. Fröhlich, P. Laure, R. Peyret, Large departures from the Boussinesq
approximation in the Rayleigh–Bénard problem, Phys. Fluids A 4 (1992)
1355–1372.

[21] A. Pantokratoras, Effect of viscous dissipation and pressure stress work in
natural convection along a vertical isothermal plate. New results, Int. J. Heat
Mass Transfer 46 (2003) 4979–4983.

[22] D.A. Nield, A. Barletta, The Horton–Rogers–Lapwood problem revisited: the
effect of pressure work, Transp. Porous Media 77 (2009) 143–158.

[23] C. Normand, Y. Pomeau, Convective instability: a physicist’s approach, Rev.
Mod. Phys. 49 (1977) 581–624.

[24] S. Wolfram, The Mathematica Book, fifth ed., Wolfram Media, Champaign, IL,
2003.

[25] F.H. Busse, Transition to turbulence in Rayleigh–Bénard convection, in: H.L.
Swinney, J.P. Gollub (Eds.), Hydrodynamic Instabilities and the Transition to
Turbulence, second ed., Springer, Berlin, 1985.


	Effect of pressure work and viscous dissipation in the analysis of the Rayleigh–Bénard problem
	Introduction
	Mathematical model
	Dimensionless equations
	Basic solution
	Linear disturbance equations
	Rolls perturbation
	Numerical solution
	Linear stability

	Stress-free boundaries
	Both  boundaries stress-free
	Upper boundary stress-free and lower boundary rigid

	Nonlinear theory
	Concluding remarks
	References


